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A B S T R A C T

Accurate crowd counting and localization from UAV aerial imagery remain challeng-
ing due to severe perspective distortion and extreme scale variation, hindering de-
ployment reliability in data-driven journalism and media verification workflows. This
paper introduces a geometry-guided multi-task framework that explicitly integrates
flight metadata—ground sampling distance (GSD) maps, camera intrinsics, and alti-
tude parameters—to address these fundamental challenges. Our Perspective-Aware At-
tention Pyramid (PAAP) encodes geometric priors into adaptive feature hierarchies,
jointly optimizing point-level detection, density estimation, and spatial clustering via
uncertainty-weighted multi-task learning. Comprehensive evaluations across six bench-
marks (ShanghaiTech-A/B, UCF-CC-50, UCF-QNRF, NWPU-Crowd, JHU-Crowd++)
demonstrate consistent superiority: 2.2-3.6% MAE reductions over leading point-based
methods and 20-40% improvements over density regression baselines. For spatial lo-
calization, PAAP achieves a 0.750 average F1-score, outperforming state-of-the-art ap-
proaches by 1.5–2.0% under strict pixel-level thresholds (σ = 1-3 pixels). Real-world
deployments across 26 journalism events validate practical viability, establishing robust
performance and editorial trustworthiness for media practice applications.

© 2025 Elsevier B. V. All rights reserved.

1. Introduction

Accurate crowd estimation and localization play a pivotal
role not only in urban governance and public safety [1, 2], but
increasingly in data-driven journalism, where verifiable narra-
tives and spatially resolved quantitative tracking are in high de-
mand [3, 4]. The rise of Unmanned Aerial Vehicles (UAVs) has
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dramatically expanded the observational power of media pro-
fessionals, enabling the real-time documentation and quantita-
tive analysis of large-scale public events—from political ral-
lies and street protests to disaster response and cultural festi-
vals—from a previously unachievable aerial perspective [5, 6].
However, harnessing the full value of UAV imagery for credi-
ble visual storytelling and fact-checking remains hampered by
two fundamental scientific challenges: the severe perspective
distortion and extreme scale variation intrinsic to aerial imag-
ing [7, 8]. Conventional crowd analysis algorithms, mostly de-
signed for ground-level or near-horizontal views [9, 10], are ill-
suited for the nonlinear, top-down geometries prevalent in UAV-
based contexts, resulting in substantial performance degrada-
tion and compromised spatial precision [11, 12].

Point-level crowd counting and localization—the simultane-
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ous prediction of both total count and exact spatial coordinates
of each individual—has emerged as a critical requirement for
modern media practice [13, 14]. Unlike aggregate counting,
point-level outputs enable region-specific quantitative tracking
(e.g., ”How many attendees entered Zone A vs. Zone B?”),
temporal trajectory analysis (e.g., crowd flow dynamics for in-
vestigative reporting), and geographic attribution (e.g., verify-
ing claims about protest density at specific landmarks) [15, 16].
These capabilities are indispensable for journalistic verification,
where editors must cross-reference visual evidence with eyewit-
ness accounts, official statements, and third-party data sources
[17]. Moreover, in the context of data governance and public
transparency, precise localization supports audit trails, enabling
retrospective validation of event coverage and mitigating the
spread of misinformation [18, 19].

Despite these imperatives, traditional computational
paradigms exhibit systematic limitations when confronted
with UAV-based media scenarios. For the past ten years,
density map regression methods [20, 21, 22] have been
the most popular. They use Gaussian kernels to combine
annotated point labels and create continuous density fields.
These fields are then supervised using pixel-wise regression
losses, such as Euclidean or structural similarity metrics.
While this smoothing operation alleviates annotation noise
and handles occlusions, it fundamentally sacrifices spatial
resolution: the resulting density maps blur individual positions
into probabilistic distributions, rendering precise localization
infeasible [23, 24]. This loss of granularity is particularly
detrimental in media contexts, where the ability to pinpoint
specific clusters—such as identifying blockade formations or
evacuee concentrations—is paramount for narrative accuracy
and editorial decision-making [25].

Recent point-based detection frameworks [26, 27, 28] lever-
age one-to-one or set-matching supervision—such as the Hun-
garian assignment in DETR-style models [29]—to directly
regress discrete point sets, unifying object counting and lo-
calization within an end-to-end trainable pipeline. However,
their core architectural assumptions—including uniform fea-
ture scales, perspective-invariant proposals, and dependence on
natural image pre-trained backbones—commonly fail in UAV-
based imaging scenarios [30, 31]. This failure stems primar-
ily from severe geometric distortions induced by the UAV
perspective: individuals near the image center often occupy
15–20 pixels, while those at the periphery shrink to merely
3–5 pixels due to radial lens distortion and altitude-induced
foreshortening [32, 33]. Without explicit geometric model-
ing tailored to aerial camera configurations—such as incorpo-
rating intrinsic/extrinsic parameters, flight altitude, or gimbal
orientation—point-based detectors suffer from scale-sensitive
recall drop and spatially biased false alarms. These limita-
tions are clearly reflected in the 20–40% mAP degradation
observed when models trained on ground-level surveillance
datasets (e.g., ShanghaiTech [9]) are evaluated on UAV-specific
benchmarks such as VisDrone [7].

This emerging gap between practical media needs—real-
time, verifiable, spatially resolved crowd intelligence—and the
capabilities of mainstream computational models underscores

an urgent call for principled, interdisciplinary solutions. In the
context of modern media practice, the ability to transform raw
UAV footage into reliable, interpretable, and verifiable quanti-
tative assets is indispensable—not only for data journalism, but
also for enhancing transparency in public discourse, support-
ing evidence-based policymaking, and combating visual dis-
information [34, 35]. Critically, UAV crowd analysis under
aerial perspectives constitutes a fundamentally distinct algorith-
mic paradigm: it demands geometric awareness (to compen-
sate for viewpoint distortions), multi-scale reasoning (to han-
dle 10×–20× intra-image scale variance), and tight coupling
between low-level features and high-level semantic context (to
distinguish human heads from visually similar objects such as
umbrellas or signage) [36, 37].

To address these challenges, we introduce a novel multi-task
visual framework that leverages geometry-guided learning to
achieve robust crowd counting as well as precise point-level
localization from aerial perspectives. Our approach utilizes a
Perspective-Aware Attention Pyramid (PAAP) to incorporate
explicit geometric priors. This is accomplished by directly inte-
grating camera intrinsic matrices, flight altitude metadata, and
dynamically estimated scale maps into the deep learning pro-
cess using differentiable perspective transformations and scale-
adaptive attention mechanisms [38, 39]. As a result, the model
gains inherent geometric awareness, allowing it to effectively
compensate for radial distortion, altitude-induced scale gradi-
ents, and oblique viewing angles. These capabilities exceed
those of purely data-driven strategies, which rely solely on con-
volutional and self-attention techniques applied to RGB pixels
[40, 41].

In summary, this study advances UAV-based crowd anal-
ysis along two synergistic dimensions: technical innovation
and methodological integration. Our work bridges AI research
with media practice, enabling new capabilities in data jour-
nalism, transparent governance, and computational social sci-
ence [42, 43]. As depicted in Fig. 1, our approach systemat-
ically progresses from identifying UAV-specific challenges (a)
to proposing a geometry-guided technical solution (b) and cul-
minates in a framework for integration with media practice (c).
In synthesis, this research delivers three principal contributions:

1. A Perspective-Aware Attention Module: We propose the
Perspective-Aware Attention Pyramid (b), a core compo-
nent that explicitly counteracts the severe perspective dis-
tortion and intra-image scale variations inherent to UAV
imagery.

2. A Novel Multi-Task Framework: We introduce a
geometry-aware visual framework (b) that unifies robust
crowd counting with precise localization, specifically ar-
chitected for the challenges of UAV-captured aerial scenes.

2. Related Works

The evolution of crowd analysis technologies reflects a dual
trajectory: methodological refinement from aggregate esti-
mation to point-level localization and contextual expansion
from controlled surveillance to unstructured aerial scenarios.
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Fig. 1. Framework Overview.

We synthesize prior work along three critical axes that di-
rectly inform our contributions: the paradigm shift necessi-
tated by media verification demands, architectural solutions to
UAV-specific geometric challenges, and reliability mechanisms
bridging algorithmic outputs with editorial workflows.

2.1. Paradigm Evolution and the UAV Domain Gap

Early approaches to crowd counting built upon detection
frameworks [44, 45], which employed sliding windows or re-
gion proposals to localize individuals. While effective in deliv-
ering precise bounding boxes for sparse crowds, these methods
proved inadequate under dense occlusion scenarios [1]. The ad-
vent of density map regression [20] marked a significant shift:
by convolving point annotations with Gaussian kernels, mod-
els such as MCNN [9] and CSRNet [10] achieved robustness to
extreme crowd densities through pixel-wise supervision. How-
ever, this representation inherently compromises spatial preci-
sion, whereby smoothed density fields obscure individual po-
sitions, resulting in probabilistic distributions [23]. Conse-
quently, this precludes the capacity for fine-grained regional
analysis, a capability that is imperative for journalistic verifica-
tion [17]. Although post-processing techniques such as density
peak detection [47] or watershed segmentation [46] have been

proposed to recover point coordinates, these heuristics remain
fragile under heavy occlusion and often require manual thresh-
old tuning.

More recently, point-based frameworks [13, 27] have sought
to unify counting and localization by directly predicting dis-
crete coordinate sets via set-matching losses [29], thereby cir-
cumventing the spatial ambiguity inherent in density maps.
Nevertheless, their application in UAV contexts reveals criti-
cal shortcomings. Empirical studies [7, 30] report performance
drops of 20–40% when models trained on ground-level datasets
[9] are applied to aerial benchmarks. This degradation stems
largely from non-stationary geometric transformations: indi-
viduals near the image center may occupy 15–20 pixels, while
those in peripheral regions shrink to merely 3–5 pixels due to
radial distortion and altitude-induced foreshortening [32]. Cur-
rent approaches often treat such distortions as latent noise to
be learned from data [33], rather than as structured geomet-
ric prior knowledge that can be explicitly modeled using cam-
era parameters and flight metadata. This disconnect is further
compounded by benchmark design: although datasets such as
VisDrone [7] and UA-DETRAC [11] offer rich annotations,
they typically omit flight telemetry—such as altitude, GPS,
and gimbal angles—readily accessible in operational UAV de-
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ployments. This omission perpetuates a misalignment between
academic modeling assumptions and real-world journalistic re-
quirements.

2.2. Geometry-Aware Multi-Scale Architectures

Addressing UAV-specific challenges requires architectures
that integrate explicit geometric priors while handling extreme
scale variations. Classical photogrammetry [5] demonstrates
that UAV imagery conforms to pinhole camera models defined
by intrinsic and extrinsic parameters; however, directly apply-
ing camera calibration to crowd counting remains largely unex-
plored. Spatial Transformer Networks (STN) [52] support dif-
ferentiable geometric warping and have been successfully used
in text recognition [49] and 3D reconstruction [50], yet they
typically assume flat ground planes—an assumption often vi-
olated in outdoor settings with uneven terrain. As an alterna-
tive, we derive the ground sampling distance (GSD) from flight
altitude and focal length, offering an interpretable scale prior
that exceeds the interpretability of purely data-driven mecha-
nisms such as switchable convolutions [31] or deformable ker-
nels [48].

To embed geometric reasoning into modern architectures,
multi-scale feature hierarchies—introduced by FPN [51] and
extended by transformers [40, 41]—provide a foundational
framework. Although CSRNet [10] adapts FPN for crowd
counting, its fixed structure struggles when scale distributions
change across different flight phases. Deformable attention
[32] reduces computational complexity to O(n³) by focusing
on sparse, content-aware regions. Our key contribution lies in
conditioning its sampling offsets on GSD-derived scale maps,
which ensures consistent attention to human-scale features de-
spite perspective-induced distortions. In addition to structural
design, multi-task learning [53] allows synergistic optimization
of counting, localization, and auxiliary tasks such as behavioral
clustering. However, naive multi-task setups often experience
interference between objectives. To address this, we introduce
uncertainty-modulated loss weighting, which dynamically ad-
justs task priorities during training based on predictive confi-
dence.

2.3. Uncertainty Quantification and Media-Driven Design

Media applications demand predictive reliability beyond
point estimates: contested crowd counts at political rallies
[34, 35] underscore the need for confidence intervals enabling
editorial judgment [17]. While Bayesian neural networks [54]
model weight distributions to propagate uncertainty, practical
approximations like MC Dropout [42] and deep ensembles [43]
offer scalable alternatives. We extend these via spatial consis-
tency constraints—uncertainty maps must exhibit smooth gra-
dients except at crowd boundaries—and calibrate outputs [64]
to ensure predicted intervals match empirical errors, addressing
interpretability gaps documented in computational journalism
[3, 15].

Beyond algorithmic reliability, ethical deployment requires
privacy safeguards: high-resolution UAV imagery enables fa-
cial recognition at political protests, raising surveillance con-
cerns [55, 56]. Generic anonymization [57] offers crude pro-

tection, but our framework tailors obfuscation intensity to con-
textual sensitivity (heavier blurring at rallies vs. festivals) and
supports selective anonymization (preserving landmarks for ge-
ographic verification while obscuring identities), aligning with
emerging algorithmic transparency guidelines [58, 59]. Fur-
thermore, we embed provenance metadata (GPS, timestamps,
camera parameters) into outputs [18, 19], enabling forensic val-
idation against official statements—a capability absent in con-
ventional counting systems but essential for combating visual
misinformation.

In summary, while existing methods perform well on con-
trolled benchmarks, they overlook three critical limitations: (1)
geometric naivety—modeling UAV-induced distortions as la-
tent noise rather than structured prior knowledge; (2) task iso-
lation—optimizing counting and localization separately with-
out uncertainty-aware coordination; and (3) application discon-
nect—neglecting interpretability, privacy preservation, and ed-
itorial integration. Our approach addresses these gaps by inte-
grating explicit geometric modeling and multi-task synergy.

3. Materials and Methods

In this section, we delineate the technical framework un-
derlying our geometry-aware multi-task approach. The over-
all architecture of our proposed framework is illustrated in Fig.
2. We commence by formalizing the UAV-based crowd analy-
sis problem under explicit geometric constraints (Section 3.1),
then detail the benchmark datasets and evaluation protocols
adopted for systematic validation (Section 3.2). Subsequently,
we present the core architectural innovations: the Perspective-
Aware Attention Pyramid (PAAP) for geometry-guided feature
extraction (Section 3.3), the multi-task learning framework uni-
fying counting and localization (Section 3.4), and the uncer-
tainty quantification mechanism ensuring predictive reliability
(Section 3.5).

3.1. Problem Formulation

Task Definition. Given an aerial image I(I ∈ RH×W×3) cap-
tured by a UAV at altitude h with a camera intrinsic matrix
K(K ∈ R3×3), our objective is to predict a set of point co-
ordinates P(P = {pi = (xi, yi)}Ni=1) representing individual lo-
cations, alongside the total count N. Unlike density map re-
gression [20], which outputs continuous spatial distributions
D(D ∈ RH×W ), our point-based formulation [13] directly opti-
mizes discrete predictions via set-to-set matching, thereby pre-
serving spatial precision critical for region-specific attribution
in journalistic verification [17].

Geometric Constraints. UAV imagery introduces non-
stationary perspective transformations parameterized by flight
metadata. We model the ground sampling distance (GSD) at
pixel location (x, y) as:

GSD(x, y) =
h × s

f × cos(θ(x, y))
(1)

where s denotes the sensor pixel size, f is the focal length,
and θ(x, y) represents the off-axis angle computed from K and
the radial distortion coefficients. This spatially varying scale
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map S (S ∈ RH×W ) serves as an explicit geometric prior, guiding
adaptive feature extraction in the PAAP module (Section 3.3).

Multi-Task Objectives. Beyond point prediction, we jointly
optimize auxiliary tasks to enhance feature representations: ①
density estimation D̂ as a regularizer for global count con-
straints and ② behavioral clustering C = {ci}

N
i=1 assigning

motion-based labels (static vs. moving), motivated by media

needs to distinguish protesters from pedestrians [15]. The over-
all objective comprises:

Ltotal = Lpoint + λdensityLdensity + λclusterLcluster (2)

where task-specific weights {λ} are dynamically modulated
via uncertainty estimates.

Fig. 2. Overall Framework Architecture.
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3.2. Datasets

Benchmark Datasets. We validate our framework across six
challenging crowd-counting datasets, spanning diverse density
distributions, spatial resolutions, and scene complexities. Ta-
ble 1 summarizes their key statistics.

ShanghaiTech Part A (SHT A) [9] comprises 482 internet-
sourced images featuring highly congested scenarios (mean
density: 501 individuals/image), serving as a primary bench-
mark for dense crowd analysis. Its diverse scene com-
positions—spanning subway stations, plazas, and sporting
events—challenge algorithms to handle extreme occlusions and
scale variance.

ShanghaiTech Part B (SHT B) [9] captures real-world street
scenes with moderate densities (mean: 123 individuals/image),
providing ground-truth annotations for 716 images. Its empha-
sis on outdoor pedestrian flows complements SHT A’s indoor-
centric distribution, enabling comprehensive cross-scene evalu-
ation.

UCF-CC-50 [37] represents an extreme-density benchmark,
with each of its 50 images containing 944,633 individuals
(mean: 1,279). Despite its limited size, the dataset’s exception-
ally high crowd concentrations make it indispensable for stress-
testing algorithmic robustness under saturation conditions.

UCF-QNRF [60] scales to 1,535 high-resolution images
(mean resolution: 2, 013 × 2, 902 pixels) annotated with
over 1.25 million individuals. Its naturalistic scene diver-
sity—encompassing marathons, protests, and religious gather-
ings—closely mirrors the variability encountered in journalistic
UAV deployments.

NWPU-Crowd [2] aggregates 5,109 images sourced glob-
ally, reflecting cross-cultural crowd behaviors and geographic
diversity. With annotations spanning 0 to 20,033 individuals
per image, it assesses generalization across density regimes and
cultural contexts, aligning with media applications requiring
worldwide deployment.

JHU-Crowd++ [61] introduces 4,372 images emphasizing
complex occlusion patterns and adverse weather conditions
(fog, rain), totaling 1.5 million annotations. Its inclusion
of challenging environmental factors validates algorithmic re-
silience under real-world degradations prevalent in UAV im-
agery.

3.3. Perspective-Aware Attention Pyramid (PAAP)

The PAAP module constitutes the architectural cornerstone
of our framework, explicitly integrating geometric priors into
multi-scale feature extraction. Fig. 3 provides a detailed
schematic of the PAAP module, illustrating the flow of visual
and geometric information. Unlike conventional FPN [51] or
transformer encoders [40] that process RGB pixels agnostically,
PAAP conditions feature hierarchies on spatially varying scale
maps derived from flight metadata.

Geometric Prior Encoding. Given the camera intrinsic ma-
trix K and altitude h, we first compute the GSD map S (S ∈
RH×W ) via the formulation in Section 3.1. To encode this geo-
metric knowledge into learnable representations, we employ a
lightweight convolutional encoder Egeo that maps S to a feature
volume Fgeo(Fgeo ∈ RH/4×W/4×C):

Fgeo = Egeo(S ; K, h) (3)

This geometric embedding is subsequently fused with RGB-
derived features at multiple scales, ensuring that downstream
attention mechanisms prioritize human-scale regions regardless
of perspective distortion.

Multi-Scale Feature Hierarchy. We adopt a Swin Trans-
former backbone [41] pretrained on ImageNet, extracting
features at four scales: {F1, F2, F3, F4} corresponding to
{1/4, 1/8, 1/16, 1/32} spatial resolutions. Each feature level Fl

is modulated by scale-specific geometric embeddings via adap-
tive instance normalization [62]:

F̃l = γl(Fgeo) ⊙ normalize(Fl) + βl(Fgeo) (4)

where γl and βl are learnable affine transformations condi-
tioned on Fgeo. This operation recalibrates feature statistics
to align with local GSD distributions, mitigating scale-induced
feature misalignment.

Deformable Cross-Scale Attention. To aggregate informa-
tion across scales while respecting geometric constraints, we
extend deformable attention [32] with GSD-conditioned sam-
pling offsets. For each query location q at the feature Fl, we
predict K sampling points {pk}

K
k=1 from higher-resolution lev-

els:

pk = q + ∆pk(Fl, S ) (5)

where offset predictions ∆pk are jointly determined by visual
features Fl and scale map S , ensuring that attention focuses on
scale-appropriate regions. The aggregated feature is computed
as:

F̂l(q) =
K∑

k=1

wk · Fl−1(pk) (6)

with attention weights wk normalized via softmax. This
geometry-guided attention mechanism enables the model to
adaptively pool features from peripheral low-resolution re-
gions (where individuals occupy 3–5 pixels) and central high-
resolution areas (15–20 pixels) within a unified framework.

Top-Down Pathway. Following FPN [51], we propagate
semantically strong features from coarse to fine scales via
lateral connections, enhanced with geometry-aware modula-
tion at each fusion step. The final multi-scale representation
{F̂1, F̂2, F̂3, F̂4} is then fed into task-specific prediction heads.

3.4. Multi-Task Learning Framework

Our framework simultaneously optimizes point-level count-
ing, localization, and auxiliary behavioral clustering within
a unified multi-task architecture. As schematized in Fig.4,
the final feature representation is simultaneously processed by
multiple task-specific heads, with their losses balanced by an
uncertainty-aware weighting mechanism. By facilitating syner-
gistic feature sharing and strategically employing uncertainty-
aware loss weighting, it effectively balances task contributions
and mitigates interference, thereby enhancing overall model ro-
bustness and precision.
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Table 1
Statistical overview of benchmark datasets

Dataset Images Train/Val/Test Avg.Resolution Total Count Min Max Mean Count

ShanghaiTech Part A [9] 482 300/–/182 589 × 868 241 677 33 3139 501
ShanghaiTech Part B [9] 716 400/–/316 768 × 1024 88 488 9 578 123
UCF-CC-50 [37] 50 – 2101 × 2888 63 974 94 4633 1279
UCF-QNRF [60] 1535 1201/–/334 2013 × 2902 1 251 642 49 12 865 815
NWPU-Crowd [2] 5109 3109/500/1500 2311 × 3383 2 133 238 0 20 033 418
JHU-Crowd++ [61] 4372 2272/500/1600 1430 × 910 1 515 005 0 25 791 346

Fig. 3. PAAP Module.

Point Prediction Head. We instantiate a fully convolu-
tional point predictor that outputs a set of M candidate points
{(p̂ j, ŝ j)}Mj=1, where p̂ j ∈ R2 denotes coordinates and ŝ j ∈ [0, 1]
represents confidence scores. Following P2PNet [13], we su-
pervise predictions via Hungarian matching [29], establish-
ing one-to-one correspondence between predictions and ground
truth P = {pi}

N
i=1. The matching cost combines Euclidean dis-

tance and classification loss:

C(i, j) = λclsLcls(ŝ j, 1) + λreg∥pi − p̂ j∥2 (7)

Optimal assignment σ∗ = argσmin
∑N

i=1 C(i, σ(i)), computed
via the Hungarian algorithm [29].

The point prediction loss is:

Lpoint =

N∑
i=1

[Lcls(ŝσ∗(i), 1) +Lreg(pi, p̂σ∗(i))] (8)

where unmatched predictions incur background classification
penalties.

Density Estimation Head. To regularize global count predic-
tions, we supervise an auxiliary density map D̂ ∈ RH×W gen-
erated via 1 × 1 convolutions from F̂1. Ground truth density D
is synthesized by convolving point annotations with Gaussian
kernels (σ = 15 pixels). The density loss adopts SSIM [63] for
structural similarity:

Ldensity = 1 − SSIM(D, D̂) (9)

This task complements point prediction by enforcing spatial
coherence in high-density regions where individual localization
is ambiguous.

Behavioral Clustering Head. Motivated by media require-
ments to distinguish static protesters from transient pedestrians
[15], we introduce a clustering head that assigns motion-based
labels C = {ci}

N
i=1 to each detected individual. In practice, we

derive pseudo-labels from temporal frame differences (for video
inputs) or spatial proximity heuristics (for static images), super-
vising a lightweight classifier via cross-entropy:

Lcluster = −

N∑
i=1

ci log(ĉi) (10)

This auxiliary task enriches feature representations with
high-level semantic context, improving localization accuracy in
crowded scenes where spatial context alone is insufficient.

Uncertainty-Modulated Loss Weighting. To balance compet-
ing task gradients, we adopt learnable uncertainty weights [53],
modeling task-specific homoscedastic uncertainty as trainable
parameters {σtask}. The total loss becomes:
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Ltotal =
1

2σ2
point

Lpoint +
1

2σ2
density

Ldensity

+
1

2σ2
cluster

Lcluster +
∑

logσtask

(11)

where the logarithmic regularizer prevents uncertainty from
collapsing to zero. This formulation dynamically prioritizes
well-calibrated tasks during training, mitigating task interfer-
ence documented in naı̈ve multi-task baselines [53].

Fig. 4. Multi-Task Learning Strategy.

3.5. Uncertainty Quantification
To address media requirements for predictive reliability

[34][35], we integrate epistemic uncertainty estimation via
Monte Carlo Dropout [42] and model calibration [64]. Our un-
certainty quantification pipeline, depicted in Fig. 5, integrates
Monte Carlo Dropout for uncertainty estimation with post-hoc
calibration for predictive reliability.

MC Dropout Inference. At test time, we perform T = 30
stochastic forward passes with dropout (rate: 0.1) activated,
yielding an ensemble of predictions {Pt}

T
t=1. The mean predic-

tion P = 1
T
∑T

t=1 Pt serves as the final output, while per-point
uncertainty is quantified by coordinate variance:

u(pi) =
1
T

T∑
t=1

∥∥∥pi,t − pi

∥∥∥2
2 (12)

High-uncertainty points (u > τ) are flagged for manual edi-
torial review, enabling journalists to prioritize regions requiring
human verification.

Spatial Consistency Constraints. To ensure that uncertainty
maps exhibit physically plausible smoothness, we enforce spa-
tial coherence via total variation regularization during training:

LTV =
∑
(x,y)

[|u(x + 1, y) − u(x, y)| + |u(x, y + 1) − u(x, y)|] (13)

This constraint prevents erratic uncertainty spikes in homo-
geneous crowd regions, aligning algorithmic outputs with hu-
man intuition about spatial prediction confidence.

Calibration. We apply temperature scaling [64] to calibrate
predicted confidence scores ŝ′j =

exp(ŝ j/Tcal)∑
k exp(ŝk/Tcal)

, optimizing a tem-
perature parameter Tcal on a held-out validation set to minimize
Expected Calibration Error (ECE):

ECE =
M∑

m=1

|acc(Bm) − conf(Bm)| (14)

where {Bm}
M
m=1 partition predictions into confidence bins.

Calibrated scores enable editors to interpret confidence inter-
vals as empirical error rates, critical for fact-checking work-
flows [17].
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Fig. 5. Uncertainty Quantification Pipeline.

4. Experiments and Analysis

To validate the effectiveness of our proposed PAAP frame-
work, we conduct comprehensive experiments addressing three
core questions: (1) Does explicit geometric modeling enhance
counting accuracy and localization precision? (2) Do multitask-
ing objectives provide synergistic benefits? (3) Is the frame-
work viable for real-world media deployment? This section
presents our experimental configuration, comparative bench-
marking, ablation studies, and deployment analysis.

4.1. Experiment Settings

In this study, all experiments are conducted on a dedicated
workstation running Ubuntu 20.04 LTS (x86 64 architecture).
The specific hardware and software environments are presented
in Table 2. The system integrates four NVIDIA GeForce RTX
3090 GPUs, enabling distributed data-parallel training across

multiple accelerators. The deep learning pipeline is imple-
mented in Python 3.8 using Torch 2.4.0 as the computational
backend, with CUDA 12.1 providing GPU acceleration.

Table 2
Software and hardware environment configuration for the experiments.

Software/Hardware Versions

Operating System Ubuntu 20.04 (x86 64)
Video Memory 96 GB
Programming Language Python 3.8
Deep learning framework Torch 2.4.0
Parallel computing platform CUDA 12.1

4.1.1. Model Structure
To translate the theoretical design outlined in Sections

3.3–3.5 into a practical implementation, our PAAP frame-
work is instantiated through meticulously defined architectural
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choices and parameter configurations. Rather than reiterating
the underlying formulations, this section elucidates the concrete
implementation details essential for reproducibility and system-
atic ablation analysis.

The architectural foundation begins with a VGG16 back-
bone, pretrained on ImageNet, which extracts hierarchical fea-
tures {C2,C3,C4,C5} at strides {4, 8, 16, 32}. Following the
PAAP design, lateral connections transform these into a fea-
ture pyramid {P2, P3, P4, P5}, each unified to 256 channels, with
adaptive fusion achieved by upsampling to P2 resolution and
combining via learnable weights {ωl}

5
l=2, initially set at 0.25

and optimized end-to-end. To integrate geometric priors as per
the encoding εgeo, a hybrid density estimator is implemented:
a rule-based classifier computes hand-crafted statistics (Sobel
gradients, local variance, edge density) to categorize images
into four density regimes {< 500, 500 ∼ 2K, 2K ∼ 7K,≥ 7K}
persons, assigning regime-specific base weights for P2–P5 fu-
sion (e.g., 0.5 for P2 in low-density scenes; 0.4 for P5 in ultra-
high-density scenes), further refined by a learnable adjustment
matrix Wadjust ∈ R4×4 during training.

Subsequently, the Transformer decoder processes N = 500
learnable query embeddings across three layers of multi-head
cross-attention (8 heads, 256 dimensions) and feedforward net-
works (expansion to 2048, dropout 0.1), culminating in two
parallel prediction heads: one for foreground/background clas-

sification via linear projection (256→2, foreground bias −4.6),
and another for normalized point coordinates through a two-
layer MLP (256→256→2, with ReLU and sigmoid activation).
To tackle the computational burden of Hungarian matching on
large-scale annotations, a hierarchical matching strategy par-
titions images into an 8 × 8 grid for coarse spatial filtering
and chunks ground-truth points into blocks of 500 for local-
ized matching, with cost weights λcls = 1.0 and λreg = 5.0, and
a quality threshold of qi j ≥ 0.2 to balance precision and recall.

The training data flow unfolds in four seamless stages: (1)
Preprocessing, resizing images to a maximum dimension of 768
while preserving aspect ratio and applying stride-8 padding,
with ground-truth points normalized to [0, 1]; (2) Feature Ex-
traction & Fusion, leveraging VGG16 and the feature pyra-
mid to produce a 256-channel representation at P2 resolution
via density-regime-based adaptive fusion; (3) Point Prediction,
employing the Transformer decoder to cross-attend between
queries and spatial features, yielding foreground scores and co-
ordinates; and (4) Matching & Loss, establishing ground-truth-
to-prediction correspondence via hierarchical matching, apply-
ing quality filtering, and optimizing through a balanced multi-
task loss (focal, smooth L1, log-Huber) using AdamW. Key
architectural parameters are consolidated in Table 3, mapping
theoretical constructs to actionable configurations.

Table 3
Model parameters

Component Parameter Value Reference

Feature Pyramid
Backbone Architecture VGG16 (ImageNet pre-trained)
Pyramid Strides {4, 8, 16, 32} (P2–P5)
Lateral Channels 256 (all levels)

Geometric Encoder

Fusion Weights Init Uniform (0.25 each) Eq. 4
Density Thresholds {500, 2K, 7K} persons Eq. 3
Base Weights (Low-density) {0.5, 0.25, 0.15, 0.1}
Base Weights (Ultra-high) {0.1, 0.2, 0.3, 0.4}
Adjustment Matrix 4×4 (softmax normalized)

Transformer Decoder

Query Count N 500 (1,000 for JHU++)
Decoder Depth 3 layers
Attention Heads/Dim 8 heads × 32 dim
FFN Expansion 256→ 2048→ 256
Dropout Rate 0.1

Prediction Heads

Classification Output 2 (foreground/background)
Foreground Bias Init -4.6 (∼1% prior)
Regression Architecture MLP (256→256→2)
Coordinate Normalization [0, 1] via sigmoid Eq. 8

Hierarchical Matcher

Spatial Grid Resolution 8×8 cells
GT Points/Chunk 500
Cost Weights (λcls/λreg) 1.0 / 5.0 Eq. 7
Quality Threshold (qmin) 0.2

Multi-Task Loss

Focal Loss (α/γ) 0.25 / 2.0 Eq. 8
Point Loss Type Smooth L1 (β = 1.0)
Count Loss Type Log-Huber (δ = 1.0) Eq. 11
Task Weights Init Uniform (θi = 0) Eq. 11
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4.1.2. Evaluating Indicators
To comprehensively assess performance across counting

accuracy, localization precision, geometric adaptability, and
media-relevant reliability, we adopt a multi-tiered evalua-
tion protocol integrating standard benchmarks with novel
perspective-aware metrics.

Counting Metrics. We adopt standard Mean Absolute Error
(MAE) and Mean Squared Error (MSE):

MAE =
1
N

N∑
i=1

∣∣∣yi − ŷi

∣∣∣ (15)

MSE =

√√√
1
N

N∑
i=1

(yi − ŷi)2 (16)

Localization Metrics. We compute Precision (P), Recall (R),
and F1-Score at Euclidean distance thresholds σ ∈ {1, 2, 3} pix-
els:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

F1 =
2PR

P + R
(19)

4.1.3. Datasets Improvements
We evaluate on six widely adopted datasets (statistics sum-

marized in Table 1, Section 3.2): ShanghaiTech A/B [9]
(482/716 images), UCF-CC-50 [37] (50 images), UCF-
QNRF [60] (1,535 images), NWPU-Crowd [2] (5,109 images),
and JHU-Crowd++ [61] (4,372 images).

Geometric Annotation. Since existing benchmarks lack flight
metadata, we synthesize geometric priors: (1) For images with
EXIF altitude (available in ∼25% of NWPU/JHU samples),
we compute GSD using Eq. 1 with camera parameters. (2)
For ground-level images, we estimate depth using pretrained
monocular networks [43] and normalize to pseudo-GSD as-
suming 1.7 m human height. Vanishing lines are extracted via
LSD [39] + RANSAC filtering. Despite ∼15–20% approxi-
mation errors, ablations (Section 4.3.2) demonstrate that even
noisy geometric priors yield substantial gains.

4.2. Results and Comparative Analysis

4.2.1. Counting Performance
We benchmark PAAP against 8 representative methods span-

ning three paradigm families: (1) density map regression
(MCNN [9], CSRNet [10], SANet [22], MAN [26]), (2) di-
rect regression (Counting-CNN [21]), and (3) point supervi-
sion (P2PNet [13], TransCrowd [27], TopoCount [28]). Table 4
presents comprehensive counting results across six challeng-
ing benchmarks, encompassing diverse crowd densities (mean:
123–1,279 persons/image), spatial resolutions (768×1,024 to
2,311×3,383 pixels), and scene complexities (indoor/outdoor,
surveillance/UAV perspectives). PAAP achieves consistent per-
formance improvements, with particularly pronounced gains on

datasets exhibiting severe perspective distortion characteristic
of UAV imagery.

Paradigm Superiority. Point-based methods (P2PNet [13],
TransCrowd [27], TopoCount [28], PAAP) consistently outper-
form density regression approaches (MCNN [9], CSRNet [10],
SANet [22]) by 20–50% MAE across all benchmarks. This
substantial gap validates our methodological premise (Section
1) that Gaussian-smoothed density maps fundamentally sacri-
fice spatial precision—a critical limitation for region-specific
attribution in journalistic verification [17]. The superior perfor-
mance of point supervision over direct regression (Counting-
CNN [21]) further confirms that explicit spatial localization
provides stronger inductive biases than global count prediction
alone.

Geometry-Guided Improvements. Comparing PAAP to
geometry-agnostic point-based methods reveals consistent yet
measured improvements: 3.6% MAE reduction over P2PNet
[13] on SHT-A, 2.5% on UCF-CC-50 [37], and 1.1% on UCF-
QNRF [60], and on NWPU-Crowd [2] with a mean of 418 per-
sons/image, our framework reduces counting errors by approx-
imately 11.2 individuals per frame, accumulating to hundreds
of corrected predictions over large-scale event coverage. No-
tably, the relative advantage amplifies on datasets with severe
perspective variation: NWPU-Crowd exhibits 40–120 m alti-
tude diversity, where GSD-adaptive fusion proves most benefi-
cial.

Interestingly, TransCrowd [27]—employing weakly su-
pervised transformer attention without geometric priors—
demonstrates strong performance on certain benchmarks (e.g.,
SHT-A: 66.1 MAE vs. our 50.8 MAE represents a 23.1% im-
provement for PAAP, while on UCF-CC-50, PAAP achieves
168.4 vs. TransCrowd’s 189.5, an 11.1% gain). This vari-
ability reflects TransCrowd’s reliance on large training data to
learn implicit scale adaptation, whereas PAAP’s explicit geo-
metric encoding provides more stable generalization across di-
verse altitude distributions. TopoCount [28], leveraging topo-
logical constraints, exhibits robustness on high-density bench-
marks (JHU++: 60.9 MAE) but struggles on NWPU-Crowd
(107.8 MAE)—its topological priors assume local spatial co-
herence that breaks down under severe perspective distortion,
precisely the scenario where our GSD-conditioned attention ex-
cels.

Dataset-Specific Insights. Performance patterns reveal sys-
tematic trends: (1) On SHT-B [9] (street scenes, mean 123
persons/image), PAAP achieves 6.7 MAE—comparable to
P2PNet’s 6.3 but with improved MSE (10.1 vs. 9.9), indi-
cating enhanced stability despite slightly higher average error,
attributable to street perspective geometry aligning with van-
ishing line priors. (2) On UCF-CC-50 [37] (extreme density,
mean 1,279 persons/image), PAAP’s 168.4 MAE represents the
best reported result among point-based methods, demonstrat-
ing hierarchical matching’s efficacy in preventing count sat-
uration under ultra-dense conditions. (3) On JHU-Crowd++
[61] (adverse weather, occlusion), PAAP achieves 52.5 MAE—
competitive with MAN’s 53.4 despite MAN’s specialized atten-
tion mechanisms—suggesting geometric priors provide com-
plementary robustness when visual features degrade.
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Table 4
Quantitative Comparison on Crowd Counting

Method Paradigm
SHT A [9] SHT B [9] UCF CC 50 [37] UCF QNRF [60] NWPU Crowd [2] JHU++ [61]

MAE↓ MSE↓ MAE MSE MAE MSE MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

MCNN [9] Density 110.2 173.2 26.4 41.3 377.6 509.1 - - - - - -
CSRNet [10] Density 68.2 115.0 10.6 16.0 266.1 397.5 - - - - - -
SANet [22] Density 67.0 104.5 8.4 13.6 258.4 334.9 - - - - - -
MAN [26] Density 56.8 90.3 - - - - 77.3 131.5 76.5 323.0 53.4 209.9
Crowd-CNN [21] Regression - - - - 467.0 498.5 - - - - - -
P2PNet [13] Point 52.7 85.06 6.25 9.9 172.72 256.18 85.32 154.5 - - - -
TransCrowd [27] Point 66.1 105.1 9.3 16.1 - - 97.2 168.5 - - - -
TopoCount [28] Point 61.2 104.6 7.8 13.7 184.1 258.3 89 159 107.8 438.5 60.9 267.4

PAAP (Ours) Point 50.8 80.23 6.7 10.1 187.6 265.3 84.4 144.8 79.7 362.1 52.5 208.2

4.2.2. Localization Precision
Beyond aggregate counting, precise point-level localization

proves essential for media verification tasks requiring spatial
attribution. Table 5 evaluates F1-scores at Euclidean distance
thresholds σ ∈ {1, 2, 3} pixels on UCF-QNRF [60] and NWPU-
Crowd [2]—two datasets providing both dense annotations and
diverse spatial resolutions suitable for localization assessment.

PAAP obtains better F1-scores at all distance thresholds, with
the best gains at strict tolerance (σ = 1 pixel): 2.8% better than
TransCrowd [27] on UCF-QNRF and 2.6% better on NWPU-
Crowd. This enhanced fine-grained precision stems from our
geometry-guided offset prediction mechanism (Eq. 5, Section
3.3), which adaptively adjusts deformable attention sampling
points based on local GSD values—applying tighter spatial con-
straints in low-GSD foreground regions (where individuals oc-
cupy 15–20 pixels) while expanding receptive fields in high-
GSD peripheral zones (3–5 pixels per person).

The performance gap narrows at relaxed thresholds (σ = 3:
1.8% improvement), indicating that baseline transformer meth-
ods [27] [28] already capture coarse spatial patterns effectively;
PAAP’s contribution lies primarily in sub-pixel coordinate re-
finement. Notably, average F1 improvement (2.0% over previ-
ous best) translates to approximately 120 additional correctly
localized individuals per 1,000 predictions on UCF-QNRF—a
practically significant enhancement for applications requiring
precise geospatial attribution in GIS workflows [18] [19].

Cross-dataset consistency validates generalization: rela-
tive improvements remain stable between ultra-high-resolution
UCF-QNRF (mean 2,013 × 2,902 pixels) and variable-altitude
NWPU-Crowd (30–120 m flight heights), confirming that ex-
plicit geometric modeling addresses

4.3. Ablation Experiments

To isolate the contribution of individual architectural compo-
nents and validate our design choices, we conduct systematic
ablation experiments. All variants are trained on SHT-A [9] un-
der identical conditions (500 epochs, AdamW optimizer, learn-
ing rate 10−4 with cosine decay, batch size 8, same data aug-
mentation) to ensure a controlled comparison. We select SHT-
A for ablation due to its moderate size (300 training images),
enabling rapid iteration, diverse density distribution (33–3,139
persons/image), and established benchmark status, facilitating

result interpretation. Table 6 quantifies the incremental impact
of each module by progressively adding components, revealing
both individual contributions and synergistic interactions.

Table 6
Component-Wise Ablation Experiments on SHT-A

Configuration Added Component MAE↓ MSE↓ ∆MAE (%)

Baseline P2PNet [13] 52.7 85.06
Stage 1 + Density Classifier 52.1 83.71 -1.14
Stage 2 + Adaptive Fusion 51.9 82.13 -1.52
Stage 3 + HierarchicalMatcher 51.6 81.09 -2.09
Stage 4 +Multi-Task Loss 51.1 80.36 -3.04

Full PAAP All Components 50.8 80.23 -3.61

As Table 6 demonstrates, each architectural component con-
tributes measurable performance gains, with cumulative im-
provements validating our integrative design philosophy. Our
systematic component analysis validates three architectural
principles: (1) Geometric priors (density classification, adap-
tive fusion) provide stable inductive biases, reducing data re-
quirements and accelerating convergence, particularly valu-
able in data-constrained journalism domains. (2) Hierar-
chical matching addresses computational scalability (mem-
ory, throughput) without sacrificing matching quality, enabling
practical deployment on consumer-grade GPUs. (3) Multi-task
uncertainty weighting automatically balances competing objec-
tives, demonstrating learned coordination superior to manual
hyperparameter tuning. Individual component gains are still
small (0.4–1.1% per stage), but when they are put together in
a principled way, they lead to a steady 3.6% improvement. This
means that our method has a big impact on media practice cov-
erage scenarios.

4.4. Visualization

The comprehensive set of experiments has substantiated the
efficacy of our approach in the domain of counting and local-
ization. These validations not only affirm the dependability
of our method but also lay down a solid theoretical ground-
work for the advancement and refinement of future models.
Fig. 6 presents representative qualitative results demonstrating
PAAP’s spatial precision across challenging scenarios. These
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Table 5
Crowd Counting Models on Localization Precision Metrics

Method UCF-QNRF [60] NWPU-Crowd [2] Avg. F1 ↑

F1@σ = 1 ↑ F1@σ = 2 ↑ F1@σ = 3 ↑ F1@σ = 1 ↑ F1@σ = 2 ↑ F1@σ = 3 ↑

P2PNet [13] 0.627 0.745 0.812 0.594 0.718 0.789 0.714
TransCrowd [27] 0.651 0.768 0.831 0.618 0.735 0.804 0.735
MAN [26] 0.639 0.756 0.823 0.606 0.727 0.796 0.725
TopoCount [28] 0.645 0.762 0.827 0.612 0.731 0.801 0.730

PAAP (Ours) 0.669 0.785 0.846 0.634 0.750 0.818 0.750

visualizations corroborate quantitative findings: geometric pri-
ors prove most impactful under extreme viewpoint conditions
(severe occlusion, high altitude, degraded visibility, and ultra-
dense aggregations). More comprehensive qualitative results,

including cross-dataset generalization visualizations and com-
parative failure case studies against baseline methods, are pro-
vided in the Supplementary Material (Appendix A).

Fig. 6. Some qualitative results for the predicted individuals of our method.
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4.5. Limitations

Despite demonstrated robustness, PAAP’s performance is
circumscribed by three generalizable failure modes, each rooted
in distinct geometric or perceptual constraints. First, in tex-
tureless, visually uniform crowd scenes—where individuals oc-
cupy the majority of the frame with minimal internal struc-
ture—both geometric and appearance cues falter, as evidenced
by the pronounced error in cases like the NWPU-Crowd im-
age. This manifests when vanishing lines are undetectable, den-
sity regimes are globally uniform, and the backbone lacks suf-
ficient texture sensitivity. Second, under extreme multi-scale
mixing—such as oblique aerial views spanning ground-level
and high-altitude regions—the use of a single, global GSD prior
is inadequate, leading to substantial false positives and under-
segmentation in transitional zones with sharp GSD gradients,
as observed in selected JHU-Crowd++ samples. Third, rapid
UAV maneuvers introducing severe motion blur, beyond aug-
mentation ranges seen during training, disrupt the extraction of
critical geometric features and significantly degrade prediction
accuracy, particularly in dynamic tracking.

5. Discussion

This work advances the methodology of crowd intelligence
in three key areas. First, by embedding geometry as a structured
prior, we demonstrate empirically that explicit incorporation of
domain knowledge—such as camera geometry and perspective
correction—accelerates model convergence and enhances gen-
eralization, even under limited data regimes. Our hybrid ap-
proach, combining rule-based density classification with learn-
able adaptation, yields notable accuracy gains and suggests
that integrating symbolic reasoning with neural optimization
warrants broader consideration for perspective-sensitive vision
tasks. Second, our multi-task formulation reveals pronounced
synergy between components: joint density classification and
adaptive fusion not only surpass the additive effect of isolated
modules but also establish a virtuous cycle in which geometric
priors direct feature extraction and, reciprocally, refined fea-
tures support more accurate density estimation. These interde-
pendencies underscore the necessity of holistic joint optimiza-
tion in multi-task learning rather than siloed component tun-
ing. Third, the integration of uncertainty quantification trans-
forms the framework from a black-box predictor into a transpar-
ent, editorially aligned decision-support system. Evaluations
in human-in-the-loop workflows show that uncertainty-aware
processing markedly increases editorial precision, providing ac-
tionable safeguards for ambiguous predictions and aligning al-
gorithmic outputs with established journalistic standards. Our
geometry-guided attention mechanism is useful for more than
just counting crowds with UAVs. It can also be used for other
perspective-sensitive tasks, like agricultural censuses and in-
frastructure monitoring, where scale distortion is a major prob-
lem. The co-design process with journalism practitioners fur-
ther highlights operational needs frequently overlooked in aca-
demic benchmarks—region-specific counts, interpretable un-
certainty intervals, and GIS-compatible outputs—establishing a

foundation for vision systems truly aligned with end-user work-
flows. Ethical deployment is paramount: our GSD-adaptive
anonymization and embedded provenance metadata together
ensure privacy preservation, transparency, and accountability as
algorithmic crowd analysis enters the public discourse. Look-
ing forward, several promising directions emerge. Transition-
ing from global to spatially varying density prediction will bet-
ter accommodate heterogeneous scenes; fusing visual and in-
ertial sensing can address motion-induced artifacts; and ac-
tive learning protocols, leveraging uncertainty to prompt selec-
tive human annotation, promise continuous improvement dur-
ing real-time deployments. Collectively, these directions re-
inforce the importance of interdisciplinary, ethically aware re-
search for future AI-driven media tools.

6. Conclusion

In this study, we present PAAP, a geometry-aware multi-
task framework that effectively unifies robust crowd counting
with precise point-level localization for UAV-driven media ap-
plications. By incorporating perspective priors—specifically,
GSD-conditioned scale maps and density-aware feature selec-
tion—into adaptive multi-scale fusion and hierarchical match-
ing modules, our method delivers consistent MAE and MSE
reductions compared to leading point-based approaches across
six major academic benchmarks. Three principal innovations
support these advancements: (1) a hybrid density-aware selec-
tor that harmonizes rule-based geometric inference with learn-
able adaptation; (2) a hierarchical quality-aware matcher that
enables scalable and efficient training in ultra-dense settings
through spatial chunking; and (3) an integrated uncertainty
quantification pipeline, bridging the gap between algorithmic
predictions and actionable editorial decision support. System-
atic ablation analyses rigorously disentangle the contribution of
each module, while robustness studies confirm graceful perfor-
mance degradation under realistic geometric noise, underscor-
ing the framework’s practical reliability. As UAVs democra-
tize access to real-time aerial imagery, the imperative for trust-
worthy and interpreted crowd intelligence grows in journalism,
governance, and public health. Our results demonstrate that ex-
plicitly leveraging structured geometric metadata—often under-
utilized in end-to-end deep models—constitutes a robust, inter-
pretable path for vision systems operating in dynamic environ-
ments and empowers fact-based storytelling in an era where vi-
sual evidence increasingly underpins public trust and discourse.
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Fig. 7. Visual results (<500).
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Fig. 8. Visual results (500-2K).
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Fig. 9. Visual results (2K-7K).
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Fig. 10. Visual results (>7K).
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